Elementary Maths for GMT

Exercises

Exercise 1. Compute the length and the normalized vectors of the following vectors: (a) $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ (b) $\begin{pmatrix} 5 \\ 0 \end{pmatrix}$ (c) $(2,3,2\sqrt{3})^T$

Exercise 2. Compute the following operations: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

(a)
$$\begin{pmatrix} 2\sqrt{2} - 3 \\ 4 \end{pmatrix} + (3,\sqrt{3},-\sqrt{5})^T$$

(b) $\begin{pmatrix} 2 \\ -3 \\ 9 \end{pmatrix} - \sin(\frac{\Pi}{6}) \begin{pmatrix} 8 \\ 3.5 \\ -6 \end{pmatrix}$

Exercise 3. Do the following dot product operations: (a) $(2,5)^T \cdot (3, \frac{-6}{5})^T$ (b) $(3\sqrt{2}, 4, \sqrt{3})^T \cdot (\cos(\frac{\Pi}{4}), -1, \tan(\frac{\Pi}{6}))^T$

Exercise 4. Using the dot product compute the angle between the vectors $\begin{pmatrix} 0\\\sqrt{2} \end{pmatrix}$ and $\begin{pmatrix} -1\\1 \end{pmatrix}$.

Exercise 5. Find the cosine of the angle between the vectors $(2, 1, -2)^T$ and $(-2, 3, 6)^T$.

Exercise 6. If $\mathbf{u} = (4, 1, k)^T$ and $\mathbf{v} = (5, 1, -3)^T$ are perpendicular, find k.

Exercise 7. If $\mathbf{u} = (2, -6, k)^T$ and $\mathbf{v} = (-1, 3, 2)^T$ are parallel, find k.

Exercise 8. What is the relation between the length of a vector and the dot product of the vector with itself?

Exercise 9. What do we know if $v \cdot w = 0$ for two non-null vectors v and w?

Exercise 10. Do the following cross product operations: (a) $(2,5,3)^T \times (-1,3,2)^T$ (b) $(1,1,2)^T \times (2,0,1)^T$ (c) $(1,-1,2)^T \times (-2,2,-4)^T$

Exercise 11. Show that the cross product is not commutative.

Exercise 12. Find a nonzero vector which is perpendicular to both $\mathbf{u} = (4,1,1)^T$ and $\mathbf{v} = (-1,0,2)^T$.

Exercise 13. Find a nonzero vector which is perpendicular to both $\mathbf{u} = (-2, -4, -6)^T$ and $\mathbf{v} = (3, -6, 1)^T$.

Exercise 14. If the point (3,1,k) lies on the line $(x,y,z)^T = (6,2,7)^T + t(3,1,5)^T$, find k.

Exercise 15. Find a vector parallel to the line 4x - 3y = 10.

Exercise 16. Give an implicit equation for the line which passes through the point (1, -1) and is perpendicular to the line 3x + 7y = 11.

Exercise 17. Find the point of intersection of lines ℓ_1 and ℓ_2 where: $\ell_1 : (x, y, z)^T = (0, -3, 6)^T + s(1, -1, -5)^T$ $\ell_2 : (x, y, z)^T = (-5, -7, 2)^T + t(3, 6, 2)^T$

Exercise 18. Let ℓ be a line through the origin in \mathbb{R}^2 , and let $n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ be a normal vector for ℓ . Show geometrically that all points $p = (x_p, y_p)$ that lie on the line satisfy $n \cdot p^T = 0$.

Exercise 19. Let ℓ be a line in \mathbb{R}^2 that does not go through the origin, and let $n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ be a normal vector for ℓ . Show geometrically that all points $p = (x_p, y_p)$ that lie on the line satisfy $n \cdot p^T - n \cdot p'^T = 0$, where p' is an arbitrary point on the line.

Exercise 20. Give a parametric equation for the plane V in \mathbb{R}^3 through the points $p_1 = (0, 7, 6)$, $p_2 = (8, 0, 8)$, and $p_3 = (12, 10, 0)$.

The implicit equation of a plane in 3D has the form ax + by + cz = d, where $(a, b, c)^T$ is a normal vector of the plane.

Exercise 21. Give an implicit equation for the plane V from the previous exercise.

Exercise 22. Give the implicit equation for the plane that passes through the point (-1, 1, 3) and is parallel to vectors $(1, 4, -1)^T$ and $(2, -3, 1)^T$. What is the normal vector of the plane?

Exercise 23. Give both a parametric equation and an implicit equation for the plane V in \mathbb{R}^3 through the points $p_1 = (1, 2, 3)$, $p_2 = (4, 5, 6)$, and $p_3 = (2, 4, 5)$.

Exercise 24. What is the equation of the XY-plane?

Exercise 25. Find the point of intersection of the line $(x, y, z)^T = (-1, 2, 3)^T + t(2, 3, 4)^T$ with the plane 2x + y - z = 0.

Exercise 26. Find the point of intersection of the line $(x, y, z)^T = (-3, 1, 2)^T + t(-1, 2, 3)^T$ with the plane x - 3y + 2z = 4.

Exercise 27. Do the following two parametric equations describe the same plane? $(x, y, z)^T = (1, 2, \frac{7}{5})^T + s(1, -1, -1)^T + t(2, 0, \frac{-4}{5})^T$

 $(x, y, z)^T = (-2, 1, 2)^T + s(1, 2, \frac{4}{5})^T + t(0, 1, \frac{3}{5})^T$