Elementary Maths for GMT

Exercises

Exercise 1. Compute the length and the normalized vectors of the following vectors:
(a) $\binom{3}{4}$
(b) $\binom{5}{0}$
(c) $(2,3,2 \sqrt{3})^{T}$

Exercise 2. Compute the following operations:
(a) $\left(\begin{array}{c}1 \\ 2 \sqrt{2}-3 \\ 4\end{array}\right)+(3, \sqrt{3},-\sqrt{5})^{T}$
(b) $\left(\begin{array}{c}2 \\ -3 \\ 9\end{array}\right)-\sin \left(\frac{\Pi}{6}\right)\left(\begin{array}{c}8 \\ 3.5 \\ -6\end{array}\right)$

Exercise 3. Do the following dot product operations:
(a) $(2,5)^{T} \cdot\left(3, \frac{-6}{5}\right)^{T}$
(b) $(3 \sqrt{2}, 4, \sqrt{3})^{T} \cdot\left(\cos \left(\frac{\Pi}{4}\right),-1, \tan \left(\frac{\Pi}{6}\right)\right)^{T}$

Exercise 4. Using the dot product compute the angle between the vectors $\binom{0}{\sqrt{2}}$ and $\binom{-1}{1}$.
Exercise 5. Find the cosine of the angle between the vectors $(2,1,-2)^{T}$ and $(-2,3,6)^{T}$.
Exercise 6. If $\mathbf{u}=(4,1, k)^{T}$ and $\mathbf{v}=(5,1,-3)^{T}$ are perpendicular, find k.
Exercise 7. If $\mathbf{u}=(2,-6, k)^{T}$ and $\mathbf{v}=(-1,3,2)^{T}$ are parallel, find k.
Exercise 8. What is the relation between the length of a vector and the dot product of the vector with itself?

Exercise 9. What do we know if $v \cdot w=0$ for two non-null vectors v and w ?
Exercise 10. Do the following cross product operations:
(a) $(2,5,3)^{T} \times(-1,3,2)^{T}$
(b) $(1,1,2)^{T} \times(2,0,1)^{T}$
(c) $(1,-1,2)^{T} \times(-2,2,-4)^{T}$

Exercise 11. Show that the cross product is not commutative.
Exercise 12. Find a nonzero vector which is perpendicular to both $\mathbf{u}=(4,1,1)^{T}$ and $\mathbf{v}=$ $(-1,0,2)^{T}$.

Exercise 13. Find a nonzero vector which is perpendicular to both $\mathbf{u}=(-2,-4,-6)^{T}$ and $\mathbf{v}=$ $(3,-6,1)^{T}$.

Exercise 14. If the point $(3,1, k)$ lies on the line $(x, y, z)^{T}=(6,2,7)^{T}+t(3,1,5)^{T}$, find k.
Exercise 15. Find a vector parallel to the line $4 x-3 y=10$.
Exercise 16. Give an implicit equation for the line which passes through the point $(1,-1)$ and is perpendicular to the line $3 x+7 y=11$.

Exercise 17. Find the point of intersection of lines ℓ_{1} and ℓ_{2} where:
$\ell_{1}:(x, y, z)^{T}=(0,-3,6)^{T}+s(1,-1,-5)^{T}$
$\ell_{2}:(x, y, z)^{T}=(-5,-7,2)^{T}+t(3,6,2)^{T}$
Exercise 18. Let ℓ be a line through the origin in \mathbb{R}^{2}, and let $n=\binom{x_{n}}{y_{n}}$ be a normal vector for ℓ. Show geometrically that all points $p=\left(x_{p}, y_{p}\right)$ that lie on the line satisfy $n \cdot p^{T}=0$.

Exercise 19. Let ℓ be a line in \mathbb{R}^{2} that does not go through the origin, and let $n=\binom{x_{n}}{y_{n}}$ be a normal vector for ℓ. Show geometrically that all points $p=\left(x_{p}, y_{p}\right)$ that lie on the line satisfy $n \cdot p^{T}-n \cdot p^{\prime}=0$, where p^{\prime} is an arbitrary point on the line.
Exercise 20. Give a parametric equation for the plane V in \mathbb{R}^{3} through the points $p_{1}=(0,7,6)$, $p_{2}=(8,0,8)$, and $p_{3}=(12,10,0)$.

The implicit equation of a plane in 3D has the form $a x+b y+c z=d$, where $(a, b, c)^{T}$ is a normal vector of the plane.

Exercise 21. Give an implicit equation for the plane V from the previous exercise.
Exercise 22. Give the implicit equation for the plane that passes through the point $(-1,1,3)$ and is parallel to vectors $(1,4,-1)^{T}$ and $(2,-3,1)^{T}$. What is the normal vector of the plane?

Exercise 23. Give both a parametric equation and an implicit equation for the plane V in \mathbb{R}^{3} through the points $p_{1}=(1,2,3), p_{2}=(4,5,6)$, and $p_{3}=(2,4,5)$.

Exercise 24. What is the equation of the XY-plane?
Exercise 25. Find the point of intersection of the line $(x, y, z)^{T}=(-1,2,3)^{T}+t(2,3,4)^{T}$ with the plane $2 x+y-z=0$.

Exercise 26. Find the point of intersection of the line $(x, y, z)^{T}=(-3,1,2)^{T}+t(-1,2,3)^{T}$ with the plane $x-3 y+2 z=4$.

Exercise 27. Do the following two parametric equations describe the same plane?

$$
\begin{aligned}
& (x, y, z)^{T}=\left(1,2, \frac{7}{5}\right)^{T}+s(1,-1,-1)^{T}+t\left(2,0, \frac{-4}{5}\right)^{T} \\
& (x, y, z)^{T}=(-2,1,2)^{T}+s\left(1,2, \frac{4}{5}\right)^{T}+t\left(0,1, \frac{3}{5}\right)^{T}
\end{aligned}
$$

